How to find average value of a function over a given interval?

Accepted Solution

f(x)=8x−6f(x)=8x-6 , [0,3][0,3]

The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.(−∞,∞)(-∞,∞){x|x∈R}{x|x∈ℝ}f(x)f(x) is continuous on [0,3][0,3].f(x)f(x) is continuousThe average value of function ff over the interval [a,b][a,b] is defined as A(x)=1b−a∫baf(x)dxA(x)=1b-a∫abf(x)dx.A(x)=1b−a∫baf(x)dxA(x)=1b-a∫abf(x)dxSubstitute the actual values into the formula for the average value of a function.A(x)=13−0(∫308x−6dx)A(x)=13-0(∫038x-6dx)Since integration is linear, the integral of 8x−68x-6 with respect to xx is ∫308xdx+∫30−6dx∫038xdx+∫03-6dx.A(x)=13−0(∫308xdx+∫30−6dx)A(x)=13-0(∫038xdx+∫03-6dx)Since 88 is constant with respect to xx, the integral of 8x8x with respect to xx is 8∫30xdx8∫03xdx.A(x)=13−0(8∫30xdx+∫30−6dx)A(x)=13-0(8∫03xdx+∫03-6dx)By the Power Rule, the integral of xx with respect to xx is 12x212x2.A(x)=13−0(8(12x2]30)+∫30−6dx)