MATH SOLVE

4 months ago

Q:
# 30 POINTS + BRAINLIEST!

Accepted Solution

A:

We have to find the value of 'x' in [tex] \sin (x+22)^{\circ}=\cos (2x-7)^{\circ} [/tex]By using the complementary angle formula which states:[tex] \cos (90-\Theta )=\sin \Theta [/tex]Now, [tex] \cos (90^{\circ}-(x+22)^{\circ})=\cos (2x-7)^{\circ} [/tex]Therefore, we get[tex] 90-(x+22)= (2x-7) [/tex][tex] 90-x-22= (2x-7) [/tex][tex] 68=3x -7 [/tex][tex] 75=3x [/tex][tex] x=25^{\circ} [/tex]